Infertility imposes a strain on any marriage. Because of social stigma, emotional involvement etc. it cannot be treated like other illnesses as it often represents to the couple the very essence of maleness and femaleness. Management of infertility, therefore, requires the keenest insight, the greatest tact and utmost compassion.

The pathogenesis of male infertility depends on two main factors:

1. Inability to produce good quality semen
2. Inability to deposit semen in the vagina and cervix.

The subfertile male has posed challenging problems to the medical profession. A myriad of therapeutic regimens have been devised and advocated, sometimes on scientific basis, but more often on unsound and illogical principles, as judged by modern medical standards. Most of these regimens have gradually faded into oblivion, and few have resisted the test of time and stood up to the challenge of new knowledge and progress. In cases of subfertility and improper spermatogenesis, the use of hormonal preparations has been well appreciated but with warnings of grave side-effects on prolonged treatment.

This made reproductive physiologists look for some non-hormonal preparations, which might be of use in the treatment of problems associated with male infertility.

A review of the literature revealed the utility of Tentex forte and Speman, two major non-hormonal agents of the Himalaya Drug Company Pvt. Ltd. which have been advocated in cases of premature ejaculation, spermatorrhoea, enlarged prostate and for male sterility due to oligospermia. Sahu (1954); Gour and Gupta (1959) stated Speman to be curative in cases of spermatorrhoea. Speman has been advocated in the prevention of nocturnal emissions (Heilig, 1968) and in the treatment of premature ejaculation (Bedi, 1968) and Speman forte for premature ejaculation (Bhargava, 1970; Vyas, 1970).

These studies suggest that Speman and Speman forte may improve spermatogenesis and, therefore, the effect of Speman on the histology of mature albino rat testes has been studied in the present work.
MATERIALS AND METHODS
Experiments have been performed on 16 adult albino rats weighing between 130 to 150 grams. The animals were divided into two groups of eight each and they were fed with wheat flour, bengal gram and casein *ad libitum*. The first group served as control and the second group received 0.5 ml of 5% solution of Speman daily for 30 days orally by means of an oral feeding tube. The composition of the drug is as follows:

- *Orchis mascula* (Salap misri) 65 mg
- *Lactuca scariola* (Kahu) 16 mg
- *Hygrophila spinosa* (Talmakhana) 32 mg
- *Mucuna pruriens* (Kavach) 16 mg
- Exts. *Parmelia perlata* (Chharila) 16 mg
- *Argyreia speciosa* (Vriddhadharaka) 32 mg
- *Tribulus terrestris* (Gokhru) 32 mg
- *Leptadenia reticulata* (Jivanti) 32 mg
- Suvarnavang (Mosaic gold) 16 mg

Both control and experimental animals were weighed daily and after 30 days all the animals were sacrificed by decapitation. The gonads were removed and fixed in Bouin’s fluid and stained with Haematoxylin and eosin.

RESULTS
Speman treated rats showed a gradual rise in their body weight. Speman treated rat testes revealed increased spermatogenesis (Fig. 1, 2) and also there was an increase in the size of the seminiferous tubules and the spermatozoa completely filled the lumen (Figs.3 and 4).

![Fig. 1: Photomicrograph of the testes of normal rat showing seminiferous tubules, various cells. H&E Stain, Low Power](image1)

![Fig. 2: Micrograph of testes of rat treated with Speman showing increase in the size of seminiferous tubules and enhanced spermatogenesis. H&E Stain (L.P.)(image2)
The experimental group also exhibited increased sexual desire and used to show increased mountings in a day.

DISCUSSION
Speman produced an increase in the general body weight, which indicates its anabolic nature. Bhargava (1970) and Vaze (1970) reported improvement in count motility and morphology of sperms on administration of Speman. The present work also revealed increased spermatogenesis without causing any damage to the seminiferous tubules. Sahu (1954) and Bhargava (1970) also suggested a beneficial effect of Speman in cases of spermatorrhoea. As the present work is in agreement with the previous findings and also reveals increased sexual desire associated with spermatogenesis it is suggested that Speman could be recommended in male sexual disorders like decreased libido, oligospermia and other associated sexual disorders.

ACKNOWLEDGEMENTS
The authors are thankful to Miss. Uma Mathur, Research Fellow on the Project.

REFERENCES
